The basic requirement for the MA degree is 30 units of approved coursework in Mathematics. Math 735 (Algebra II) and Math 770 (Analysis II) are the two beginning courses. It may also be waived if you have taken it before. We then choose 3 courses from the 4 course options: Math 710 (Measure Theory), Math 725 (Advanced Linear Algebra), Math 850 (Algebra III), and Math 730 (Complex Analysis) or Math 711 (Functional Analysis).

Of the remaining units, at least 3 unpaired graduate units must be included, and at most 9 units may be selected from approved unpaired undergraduate upper division courses. Math 730 (Complex Analysis) must be included among these 15 units unless the student had earned a B or higher grade in an undergraduate complex analysis course prior to admission. Independent study with individual instructors can count up to 6 units in these 30 units.

In addition to coursework, the MA degree requires a culminating experience, either a Master’s Thesis, or an expository paper plus two comprehensive exams in two of the following areas: algebra, analysis, and statistics. Math 898 Master’s Thesis, if chosen, will count 3 units toward the degree.

Tenured/tenure-track Faculty

Joseph Gubeladze
St. Petersburg State University
Algebraic Combinatorics, K-Theory

Tao He
Michigan State University
Statistics, Quantitative Biology

Shandy Hauk
UC Irvine
Mathematics & Statistics Education, Dynamical Systems

Serkant Hosten
Cornell University
Algebraic Statistics, Combinatorics

Eric Hsu
Univ. of California, Berkeley
Mathematics Education

Mohammad Kafai
Univ. of California, Santa Barbara
Statistics

Gerianne Krause
Illinois Institute of Technology
Discrete Mathematics

Judy Kysh
Univ. of California, Davis
Mathematics Education

Chun-Kit Lai
Chinese U. of Hong Kong
Harmonic Analysis, Fractal Geometry

Jean-Pierre Langlois
Univ. of California, Berkeley
Game Theory

Shidong Li
University of Maryland
Applied Computational Harmonic Analysis

Ornella Mattei
University of Brescia
Applied Mathematics, Mathematical Modeling

Alexandra Piryatinska
Kiev Univ. Case Western Univ.
Statistics

Dusty Ross
Colorado State University
Algebraic Geometry

Alexander Schuster
University of Michigan
Complex Analysis

Kimberly Seashore
Univ. of California, Berkeley
Mathematics Education

For more information contact

Dr. Chun-Kit Lai, Graduate Coordinator
Department of Mathematics
San Francisco State University
1600 Holloway Avenue
San Francisco, CA 94132
Mathematics Department: (415)-338-2251
E-mail: cklai@sfsu.edu
Website: http://math.sfsu.edu/grad_program.php

General information about graduate studies at San Francisco State University can be obtained from the University web page http://www.sfsu.edu/~gradstdy/ or by calling (415)-338-2234. International students should contact the Office of International Programs at (415)-338-1293 or on-line at http://www.sfsu.edu/~oip

San Francisco State University
Department of Mathematics

Master of Arts in Mathematics

Tenured/tenure-track Faculty (continued)

Federico Ardila
Massachusetts Inst. Technology
Combinatorics

Sheldon Axler
Univ. of California, Berkeley
Functional Analysis

David Bao
Univ. of California, Berkeley
Differential Geometry

Mathias Beck
Temple University
Analytic Number Theory, Discrete Geometry

Henry Boateng
University of Michigan
Scientific Computing, Computational Chemistry, Applied Mathematics

Emily Clader
University of Michigan
Algebraic Geometry

Lauela Fu
Univ. of Southern California
Large-scale statistics

Arek Goetz
Univ. of Illinois at Chicago
Dynamical Systems
The City’s University
San Francisco State University is a comprehensive urban university enrolling more than 6,300 graduate students in 102 different Master’s degree and credential programs. The campus is located in a vibrant and beautiful city with a rich intellectual and cultural life.

Graduate study in Mathematics at SFSU is guided by the under represented groups. The mathematics graduate students mirror San Francisco’s diverse population, including representative proportions of men and women and some international students. San Francisco State University is strongly committed to achieving excellence and women and some different M population, including representative proportions of men and women and cultural life.

San Francisco State University is a sponsor of the Mathematical Sciences Research Institute (MSRI) at Berkeley. Every year we nominate three or four students to attend MSRI summer schools to learn about topics at the forefront of mathematical research.

MA in Mathematics
The Master of Arts in Mathematics at San Francisco State University offers students the opportunity to study advanced mathematics under the guidance of a diverse faculty with many research specialties. Many contemporary areas of research are represented, including algebraic geometry, algebraic K-theory, complex analysis, functional analysis, real analysis, quantitative biology, combinatorics, differential geometry, computational and discrete geometry, dynamical systems, ergodic theory, game theory, machine learning & big data analysis, mathematics education, number theory & analytic number theory, toric varieties, tropical geometry, wavelets & frames, statistics, biostatistics, and algebraic statistics. Classes are small, usually fewer than 20 students, and graduate students pursue their own mathematical interests through seminars and special projects with faculty members.

The expected completion time for the program is two to three years. Graduates either move on to doctoral programs, or begin a teaching career in local community colleges, or find employment opportunities in nearby Silicon Valley (home for many of the world's leading technology companies), in San Francisco’s large financial & actuarial & insurance industries, and in a thriving biotechnology sector.

Admissions
Admission to the MA degree program requires an undergraduate degree at SFSU. Applicants must have completed three semesters of calculus, linear algebra, plus three upper division mathematics courses with a grade of B or better in modern algebra or real analysis. Applications are submitted on-line at https://www2.calstate.edu/apply.

Applicants must meet all colleges and universities where they have enrolled and order official transcripts to be sent to the SFSU Graduate Division. In addition to transcripts, applicants are also required to have GRE scores sent to the Mathematics Department and the SFSU Graduate Division. These documents may arrive after the application deadline.

Applicants must arrange to have at least two letters of recommendation sent to the Department. These letters may be from academic supervisors, past employers or anyone else who can address the applicant’s qualifications for graduate studies and promise in teaching.

Graduate Teaching Associates and Scholarships
Partial support for graduate students is provided through teaching positions (Graduate Teaching Associates). For many students, teaching is an important component of their career preparation. Under the guidance of a program coordinator, they prepare lectures, assign homework, write examinations, and give final grades to students. Beginning graduate teaching associates are required to enroll in Math 706, Graduate Teaching Workshop. Graduate students are eligible to apply for various scholarships offered through the Department and through the University. A small number of graduate students are partially supported by research grants of faculty members.

Courses (graduate ones are 700 level or higher)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 300</td>
<td>History of Mathematics</td>
</tr>
<tr>
<td>MATH 301</td>
<td>Exploration and Proof</td>
</tr>
<tr>
<td>MATH 310</td>
<td>Elementary Number Theory</td>
</tr>
<tr>
<td>MATH 324</td>
<td>Probability and Stats with Computing</td>
</tr>
<tr>
<td>MATH 325</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MATH 335</td>
<td>Modern Algebra</td>
</tr>
<tr>
<td>MATH 338</td>
<td>Intro to SAS</td>
</tr>
<tr>
<td>MATH 350</td>
<td>Geometry</td>
</tr>
<tr>
<td>MATH 370</td>
<td>Real Analysis I</td>
</tr>
<tr>
<td>MATH 375</td>
<td>Field Study for Secondary Teachers</td>
</tr>
<tr>
<td>MATH 376</td>
<td>Ordinary Differential Equations</td>
</tr>
<tr>
<td>MATH 380</td>
<td>Intro to Funct's of a Complex Variable</td>
</tr>
<tr>
<td>MATH 400</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>MATH 420</td>
<td>Combinatorics</td>
</tr>
<tr>
<td>MATH 424</td>
<td>Intro to Linear Models</td>
</tr>
<tr>
<td>MATH 430</td>
<td>Mathematics of Optimization</td>
</tr>
<tr>
<td>MATH 435</td>
<td>Modern Algebra II</td>
</tr>
<tr>
<td>MATH 440</td>
<td>Probability and Statistics I</td>
</tr>
<tr>
<td>MATH 441</td>
<td>Probability and Statistics II</td>
</tr>
<tr>
<td>MATH 447</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>MATH 448</td>
<td>Statistical Learning & Data Mining</td>
</tr>
<tr>
<td>MATH 449</td>
<td>Categorical Data Analysis</td>
</tr>
<tr>
<td>MATH 450</td>
<td>Topology</td>
</tr>
<tr>
<td>MATH 451</td>
<td>Elementary Differential Geometry</td>
</tr>
<tr>
<td>MATH 452</td>
<td>Algebraic Topology</td>
</tr>
<tr>
<td>MATH 460</td>
<td>Mathematical Modeling</td>
</tr>
<tr>
<td>MATH 470</td>
<td>Real Analysis II</td>
</tr>
<tr>
<td>MATH 471</td>
<td>Fourier & Wavelet Analysis</td>
</tr>
<tr>
<td>MATH 475</td>
<td>Capstone for Secondary Teachers</td>
</tr>
<tr>
<td>MATH 477</td>
<td>Partial Differential Equations</td>
</tr>
<tr>
<td>MATH 491</td>
<td>Game Theory</td>
</tr>
<tr>
<td>MATH 710</td>
<td>Real Analysis</td>
</tr>
<tr>
<td>MATH 711</td>
<td>Functional Analysis</td>
</tr>
<tr>
<td>MATH 725</td>
<td>Advanced Linear Algebra</td>
</tr>
<tr>
<td>MATH 729</td>
<td>Communicating Mathematics</td>
</tr>
<tr>
<td>MATH 730</td>
<td>Functions of a Complex Variable</td>
</tr>
<tr>
<td>MATH 850</td>
<td>Algebra</td>
</tr>
<tr>
<td>MATH 852</td>
<td>Algebraic Topology</td>
</tr>
<tr>
<td>MATH 883</td>
<td>Polytopes and Varieties</td>
</tr>
<tr>
<td>MATH 884</td>
<td>Algebraic Geometry</td>
</tr>
<tr>
<td>MATH 887</td>
<td>Analysis on Manifolds</td>
</tr>
<tr>
<td>MATH 895</td>
<td>Frames and Wavelets</td>
</tr>
</tbody>
</table>